Wind–Evaporation Feedback and the Axisymmetric Transition to Angular Momentum–Conserving Hadley Flow
نویسندگان
چکیده
The effect of wind-induced surface heat exchange (WISHE) on axisymmetric, solstitial Hadley circulations is examined for forcings strong enough to produce meridional flow that nearly conserves absolute angular momentum in the free troposphere. Such forcings are known to produce an off-equatorial ascent zone in the summer hemisphere where the convergence of zonal momentum is balanced by drag on surface westerlies. Here, a convective quasi-equilibrium model with two vertical modes is used to show that enhanced surface entropy fluxes induced by these westerlies can intensify and shift both this ascent zone and the subcloud-layer entropy peak toward the equator. The equatorward shift of the subcloud entropy peak is associated with a reduction in the forcing amplitude needed to produce angular momentum–conserving (AMC) meridional flow. A previous theory of frontogenesis in tropical cyclones is adapted to axisymmetric Hadley circulations to show how WISHE shifts the peak subcloud entropy toward the equator. These effects also occur for forcings that vary in a seasonal cycle, with the precise effect of WISHE depending on the peak amplitude of the forcing. For weak seasonally varying forcings, WISHE can abruptly increase the intensity of a local, viscous circulation, whereas for forcings of intermediate strength WISHE produces a transition to AMC flow when such a transition would not otherwise occur. For the strongest forcings, WISHE shifts the transition to AMC flow to a time earlier in the seasonal cycle. The possible relevance of these results to monsoon dynamics is discussed, as are possible effects of processes not represented in these axisymmetric models.
منابع مشابه
Wind–Evaporation Feedback and Abrupt Seasonal Transitions of Weak, Axisymmetric Hadley Circulations
For an imposed thermal forcing localized off the equator, it is known that conservation of absolute angular momentum in axisymmetric flow produces a nonlinear response once the forcing exceeds a critical amplitude. It is shown here that, for a moist atmosphere in convective quasi-equilibrium, the combination of wind-dependent ocean surface enthalpy fluxes and zonal momentum advection can provid...
متن کاملRegime Transitions of Steady and Time-Dependent Hadley Circulations: Comparison of Axisymmetric and Eddy-Permitting Simulations
Steady-state and time-dependent Hadley circulations are investigated with an idealized dry GCM, in which thermal forcing is represented as relaxation of temperatures toward a radiative-equilibrium state. The latitude f0 of maximum radiative-equilibrium temperature is progressively displaced off the equator or varied in time to study how the Hadley circulation responds to seasonally varying forc...
متن کاملEddy Influences on Hadley Circulations: Simulations with an Idealized GCM
An idealized GCM is used to investigate how the strength and meridional extent of the Hadley circulation depend on the planet radius, rotation rate, and thermal driving. Over wide parameter ranges, the strength and meridional extent of the Hadley circulation display clear scaling relations with regime transitions, which are not predicted by existing theories of axisymmetric Hadley circulations....
متن کاملAsymptotic solutions of the axisymmetric moist Hadley circulation in a model with two vertical modes
A simplified model of the moist axisymmetric Hadley circulation is examined in the asymptotic limit in which surface drag is strong and the meridional wind is weak compared to the zonal wind. Our model consists of the quasi-equilibrium tropical circulation model (QTCM) equations on an axisymmetric aquaplanet equatorial beta-plane. This model includes two vertical momentum modes, one baroclinic ...
متن کاملSingle-layer axisymmetric model for a Hadley circulation with parameterized eddy momentum forcing
An axisymmetric single-layer model is used to study interactions of the Hadley circulation with extratropical eddies. Eddy momentum fluxes are parameterized using a simple closure motivated by calculations with an idealized dry general circulation model (GCM). Calculations are performed in which the heating is parameterized as Newtonian relaxation of temperatures toward a prescribed radiative-c...
متن کامل